Package ‘FinCovRegularization’

April 25, 2016

Type Package
Title Covariance Matrix Estimation and Regularization for Finance
Version 1.1.0
Description Estimation and regularization for covariance matrix of asset returns. For covariance matrix estimation, three major types of factor models are included: macroeconomic factor model, fundamental factor model and statistical factor model. For covariance matrix regularization, four regularized estimators are included: banding, tapering, hard-thresholding and soft-thresholding. The tuning parameters of these regularized estimators are selected via cross-validation.

URL http://github.com/yanyachen/FinCovRegularization

BugReports http://github.com/yanyachen/FinCovRegularization/issues

Depends R (>= 2.10)
Imports stats, graphics, quadprog
License GPL-2
LazyData true
RoxygenNote 5.0.1

Author YaChen Yan [aut, cre], FangZhu Lin [aut]
Maintainer YaChen Yan <yanyachen21@gmail.com>

Repository CRAN

Date/Publication 2016-04-25 15:32:07

R topics documented:

banding ... 2
banding.cv .. 3
F.norm2 ... 4
FinCovRegularization .. 4
banding

<table>
<thead>
<tr>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>FundamentalFactor.Cov</td>
<td>5</td>
</tr>
<tr>
<td>GMVP</td>
<td>5</td>
</tr>
<tr>
<td>hard.thresholding</td>
<td>6</td>
</tr>
<tr>
<td>Ind.Cov</td>
<td>7</td>
</tr>
<tr>
<td>m.excess.c10sp9003</td>
<td>7</td>
</tr>
<tr>
<td>MacroFactor.Cov</td>
<td>8</td>
</tr>
<tr>
<td>O.norm2</td>
<td>8</td>
</tr>
<tr>
<td>RiskParity</td>
<td>9</td>
</tr>
<tr>
<td>soft.thresholding</td>
<td>9</td>
</tr>
<tr>
<td>StatFactor.Cov</td>
<td>10</td>
</tr>
<tr>
<td>tapering</td>
<td>11</td>
</tr>
<tr>
<td>tapering.cv</td>
<td>11</td>
</tr>
<tr>
<td>threshold.cv</td>
<td>13</td>
</tr>
</tbody>
</table>

Index

<table>
<thead>
<tr>
<th>Function</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>banding</td>
<td>15</td>
</tr>
</tbody>
</table>

Banding Operator on Covariance Matrix

Description

Apply banding operator on a covariance matrix with a banding parameter.

Usage

```r
banding(sigma, k = 0)
```

Arguments

- `sigma`: a p*p covariance matrix
- `k`: banding parameter

Value

A regularized covariance matrix after banding operation

References

"High-Dimensional Covariance Estimation" by Mohsen Pourahmadi

Examples

```r
data(m.excess.c10sp9003)
cov.SAM <- cov(m.excess.c10sp9003)
banding(cov.SAM, 7)
```
banding.cv

Select Tuning Parameter for Banding Covariance Matrix by CV

Description
Apply K-fold cross-validation for selecting tuning parameters for banding covariance matrix using grid search strategy

Usage
banding.cv(matrix, n.cv = 10, norm = "F", seed = 142857)

Arguments
- **matrix**: a N*p matrix, N indicates sample size and p indicates the dimension
- **n.cv**: times that cross-validation repeated, the default number is 10
- **norm**: the norms used to measure the cross-validation errors, which can be the Frobenius norm "F" or the operator norm "O"
- **seed**: random seed, the default value is 142857

Details
For cross-validation, this function split the sample randomly into two pieces of size n1 = n-n/log(n) and n2 = n/log(n), and repeat this k times

Value
An object of class "CovCv" containing the cross-validation's result for covariance matrix regularization, including:

- **regularization**: regularization method, which is "Banding"
- **parameter.opt**: selected optimal parameter by cross-validation
- **cv.error**: the corresponding cross-validation errors
- **n.cv**: times that cross-validation repeated
- **norm**: the norm used to measure the cross-validation error
- **seed**: random seed

References
"High-Dimensional Covariance Estimation" by Mohsen Pourahmadi
Examples

```r
data(m.excess.c10sp9003)
retcov.cv <- banding.cv(m.excess.c10sp9003, n.cv = 10,
                       norm = "F", seed = 142857)
summary(retcov.cv)
plot(retcov.cv)
# Low dimension
```

F.norm2

The Squared Frobenius Norm

Description

Calculate the squared Frobenius norm of a matrix

Usage

```r
F.norm2(matrix)
```

Arguments

- `matrix`: a matrix

Value

a scalar of the squared Frobenius norm

Examples

```r
data(m.excess.c10sp9003)
cov.SAM <- cov(m.excess.c10sp9003)
F.norm2(cov.SAM)
```

FinCovRegularization

FinCovRegularization: Covariance Matrix Estimation and Regularization for Finance

Description

Estimation and regularization for covariance matrix of asset returns. For covariance matrix estimation, three major types of factor models are included: macroeconomic factor model, fundamental factor model and statistical factor model. For covariance matrix regularization, four regularized estimators are included: banding, tapering, hard-thresholding and soft-thresholding. The tuning parameters of these regularized estimators are selected via cross-validation.
Description

Estimate covariance matrix by fitting a fundamental factor model using OLS or WLS regression

Usage

FundamentalFactor.Cov(assets, exposure, method = "WLS")

Arguments

- **assets**: a N*p matrix of asset returns, N indicates sample size and p indicates the dimension of asset returns
- **exposure**: a p*q matrix of exposure indicator for the fundamental factor model, p corresponds to the dimension of asset returns, q indicates the number of fundamental industries
- **method**: a character, indicating regression method: "OLS" or "WLS"

Value

an estimated p*p covariance matrix

Examples

```r
data(m.excess.c10sp9003)
assets <- m.excess.c10sp9003[,1:10]
Indicator <- matrix(0,10,3)
dimnames(Indicator) <- list(colnames(assets),c("Drug","Auto","Oil"))
Indicator[c("ABT","LLY","MRK","PFE"),"Drug"] <- 1
Indicator[c("F","GM"),"Auto"] <- 1
Indicator[c("BP","CVX","RD","XOM"),"Oil"] <- 1
FundamentalFactor.Cov(assets,exposure=Indicator,method="WLS")
```

GMVP

Global Minimum Variance Portfolio

Description

Computing a global minimum variance portfolio weights from the estimated covariance matrix of return series.

Usage

GMVP(cov.mat, short = TRUE)
hard.thresholding

Arguments

- cov.mat: an estimated p*p covariance matrix
- short: logical flag, indicating whether shortsales on the risky assets are allowed

Value

a numerical vector containing the estimated portfolio weights

Examples

data(m.excess.c10sp9003)
assets <- m.excess.c10sp9003[,1:10]
GMVP(cov(assets), short=TRUE)
GMVP(cov(assets), short=FALSE)

Description

Hard-Thresholding Operator on Covariance Matrix

Apply hard-thresholding operator on a covariance matrix with a hard-thresholding parameter.

Usage

hard.thresholding(sigma, threshold = 0.5)

Arguments

- sigma: a p*p covariance matrix
- threshold: hard-thresholding parameter

Value

a regularized covariance matrix after hard-thresholding operation

References

"High-Dimensional Covariance Estimation" by Mohsen Pourahmadi

Examples

data(m.excess.c10sp9003)
cov.SAM <- cov(m.excess.c10sp9003)
hard.thresholding(cov.SAM, threshold = 0.001)
Ind.Cov

Independence opeator on Covariance Matrix

Description

Apply independence model on a covariance matrix.

Usage

`Ind.Cov(sigma)`

Arguments

- `sigma`: a covariance matrix

Value

a regularized covariance matrix after applying independence model

Examples

```r
data(m.excess.c10sp9003)
cov.SAM <- cov(m.excess.c10sp9003)
Ind.Cov(cov.SAM)
```

m.excess.c10sp9003

10 stock and S&P 500 excess returns

Description

A dataset containing monthly excess returns of 10 stocks and S&P 500 index return from January 1990 to December 2003

Usage

`data(m.excess.c10sp9003)`

Format

A matrix with 168 rows and 11 variables
MacroFactor.Cov
Covariance Matrix Estimation by Macroeconomic Factor Model

Description

Estimate covariance matrix by fitting a macroeconomic factor model using time series regression

Usage

```r
MacroFactor.Cov(assets, factor)
```

Arguments

- `assets` : a N*p matrix of asset returns, N indicates sample size and p indicates the dimension of asset returns
- `factor` : a numerical vector of length N, or a N*q matrix of macroeconomic factor(s), q indicates the dimension of factors

Value

- an estimated p*p covariance matrix

Examples

```r
data(m.excess.c10sp9003)
assets <- m.excess.c10sp9003[,1:10]
factor <- m.excess.c10sp9003[,11]
MacroFactor.Cov(assets, factor)
```

O.norm2
The Squared Operator Norm

Description

Calculate the squared Operator norm of a matrix

Usage

```r
O.norm2(matrix)
```

Arguments

- `matrix` : a matrix

Value

- a scalar of the squared Operator norm
RiskParity

Examples

```r
data(m.excess.c10sp9003)
cov.SAM <- cov(m.excess.c10sp9003)
O.norm2(cov.SAM)
```

Description

Computing a Risk Parity portfolio weights from the estimated covariance matrix of return series.

Usage

```r
RiskParity(cov.mat)
```

Arguments

- `cov.mat`: an estimated p*p covariance matrix

Value

a numerical vector containing the estimated portfolio weights

Examples

```r
data(m.excess.c10sp9003)
assets <- m.excess.c10sp9003[,1:10]
RiskParity(cov(assets))
```

soft.thresholding

Soft-Thresholding Operator on Covariance Matrix

Description

Apply soft-thresholding operator on a covariance matrix with a soft-thresholding parameter.

Usage

```r
soft.thresholding(sigma, threshold = 0.5)
```

Arguments

- `sigma`: a covariance matrix
- `threshold`: soft-thresholding parameter
a regularized covariance matrix after soft-thresholding operation

"High-Dimensional Covariance Estimation" by Mohsen Pourahmadi

data(m.excess.c10sp9003)
cov.SAM <- cov(m.excess.c10sp9003)
soft.thresholding(cov.SAM, threshold = 0.001)

StatFactor.Cov

Covariance Matrix Estimation by Statistical Factor Model

Estimate covariance matrix by fitting a statistical factor model using principle components analysis

StatFactor.Cov(assets, k = 0)

assets a matrix of asset returns
k numbers of factors, if k = 0, automatically estimating by Kaiser method

an estimated p*p covariance matrix

data(m.excess.c10sp9003)
assets <- m.excess.c10sp9003[,1:10]
StatFactor.Cov(assets, 3)
tapering

Tapering Operator on Covariance Matrix

Description

Apply tapering operator on a covariance matrix with tapering parameters.

Usage

tapering(sigma, l, h = 1/2)

Arguments

- **sigma**: a p*p covariance matrix
- **l**: tapering parameter
- **h**: the ratio between taper l_h and parameter l

Value

a regularized covariance matrix after tapering operation

References

"High-Dimensional Covariance Estimation" by Mohsen Pourahmadi

Examples

data(m.excess.c10sp9003)
cov.SAM <- cov(m.excess.c10sp9003)
tapering(cov.SAM, l=7, h = 1/2)

tapering.cv

Select Tuning Parameter for Tapering Covariance Matrix by CV

Description

Apply K-fold cross-validation for selecting tuning parameters for tapering covariance matrix using grid search strategy

Usage

tapering.cv(matrix, h = 1/2, n.cv = 10, norm = "F", seed = 142857)
tapering.cv

Arguments

matrix a N*p matrix, N indicates sample size and p indicates the dimension
h the ratio between taper l_h and parameter l
n.cv times that cross-validation repeated, the default number is 10
norm the norms used to measure the cross-validation errors, which can be the Frobenius norm "F" or the operator norm "O"
seed random seed, the default value is 142857

Details

For cross-validation, this function split the sample randomly into two pieces of size n1 = n-n/log(n) and n2 = n/log(n), and repeat this k times

Value

An object of class "CovCv" containing the cross-validation's result for covariance matrix regularization, including:

regularization regularization method, which is "Tapering"
parameter.opt selected optimal parameter by cross-validation
cv.error the corresponding cross-validation errors
n.cv times that cross-validation repeated
norm the norm used to measure the cross-validation error
seed random seed

References

"High-Dimensional Covariance Estimation" by Mohsen Pourahmadi

Examples

data(m.excess.c10sp9003)
retcov.cv <- tapering.cv(m.excess.c10sp9003, n.cv = 10,
 norm = "F", seed = 142857)
summary(retcov.cv)
plot(retcov.cv)
Low dimension
threshold.cv

Select Tuning Parameter for Thresholding Covariance Matrix by CV

Description

Apply K-fold cross-validation for selecting tuning parameters for thresholding covariance matrix using grid search strategy.

Usage

```r
threshold.cv(matrix, method = "hard", thresh.len = 20, n.cv = 10, 
             norm = "F", seed = 142857)
```

Arguments

- `matrix`: a N*p matrix, N indicates sample size and p indicates the dimension
- `method`: thresholding method, "hard" or "soft"
- `thresh.len`: the number of thresholding values tested in cross-validation, the thresholding values will be a sequence of `thresh.len` equally spaced values from minimum threshold constant to largest covariance in sample covariance matrix
- `n.cv`: times that cross-validation repeated, the default number is 10
- `norm`: the norms used to measure the cross-validation errors, which can be the Frobenius norm "F" or the operator norm "O"
- `seed`: random seed, the default value is 142857

Details

For cross-validation, this function split the sample randomly into two pieces of size \(n_1 = n - n/\log(n) \) and \(n_2 = n/\log(n) \), and repeat this k times.

Value

An object of class "CovCv" containing the cross-validation's result for covariance matrix regularization, including:

- `regularization`: regularization method, which is "Hard Thresholding" or "Soft Thresholding"
- `parameter.opt`: selected optimal parameter by cross-validation
- `cv.error`: the corresponding cross-validation errors
- `n.cv`: times that cross-validation repeated
- `norm`: the norm used to measure the cross-validation error
- `seed`: random seed
- `threshold.grid`: thresholding values tested in cross-validation
References

"High-Dimensional Covariance Estimation" by Mohsen Pourahmadi

Examples

```r
data(m.excess.c10sp9003)
retpcv <- threshold.cv(m.excess.c10sp9003, method = "hard",
                       thresh.len = 20, n.cv = 10, norm = "F", seed = 142857)
summary(retpcv)
plot(retpcv)
# Low dimension
```
Index

*Topic datasets
 m.excess.c10sp9003, 7

banding, 2
banding.cv, 3

F.norm2, 4
FinCovRegularization, 4
FinCovRegularization-package
 (FinCovRegularization), 4
FundamentalFactor.Cov, 5

GMVP, 5

hard.thresholding, 6

Ind.Cov, 7
m.excess.c10sp9003, 7
MacroFactor.Cov, 8

O.norm2, 8

RiskParity, 9

soft.thresholding, 9
StatFactor.Cov, 10

tapering, 11
tapering.cv, 11
threshold.cv, 13