Package ‘cate’

October 5, 2015

Type Package
Title High Dimensional Factor Analysis and Confounder Adjusted Testing and Estimation
Version 1.0.4
Date 2015-10-02
Description Provides several methods for factor analysis in high dimension (both n,p >> 1) and methods to adjust for possible confounders in multiple hypothesis testing.
Imports MASS, esaBcv, ruv, sva, corpcor, leapp
Suggests knitr, ggplot2, gridExtra
License GPL-2
LazyData TRUE
VignetteBuilder knitr
NeedsCompilation no
Author Jingshu Wang [aut],
Qingyuan Zhao [aut, cre]
Maintainer Qingyuan Zhao <qyzhao@stanford.edu>
Repository CRAN
Date/Publication 2015-10-05 12:37:43

R topics documented:
cate-package .. 2
adjust.latent .. 2
cate ... 3
est.confounder.num .. 5
fa.em ... 7
fa.pc ... 7
factor.analysis .. 8
gen.sim.data ... 9
gender.sm .. 11
wrapper .. 11

Index 14
High dimensional factor analysis and confounder adjusted testing and estimation (CATE)

Description

Provides several methods for factor analysis in high dimension (both n,p \(\gg 1 \)) and methods to adjust for possible confounders in multiple hypothesis testing.

See Also

factor.analysis, cate

adjust.latent

Adjust for latent factors, after rotationn

Description

Adjust for latent factors, after rotationn

Usage

adjust.latent(corr.margin, n, X.cov, Gamma, Sigma, method = c("rr", "nc", "lqs"), psi = psi.huber, nc = NULL, nc.var.correction = TRUE)

Arguments

corr.margin marginal correlations, p*d1 matrix
n sample size
X.cov estimated second moment of X, d*d matrix
Gamma estimated confounding effects, p*r matrix
Sigma diagonal of the estimated noise covariance, p*1 vector
method adjustment method
psi derivative of the loss function in robust regression, choices are psi.huber, psi.bisquare and psi.hampel
nc position of the negative controls
nc.var.correction correct asymptotic variance based on our formula

Details

The function essentially runs a regression of corr.margin \(\sim \) Gamma. The sample size n is needed to have the right scale.

This function should only be called if you know what you are doing. Most of the time you want to use the main function cate to adjust for confounders.
Value

a list of objects

alpha estimated alpha, r*d1 matrix
beta estimated beta, p*d1 matrix
beta.cov.row estimated row covariance of beta, a length p vector
beta.cov.col estimated column covariance of beta, a d1*d1 matrix

See Also

cate

cate

The main function for confounder adjusted testing

Description

The main function for confounder adjusted testing

Usage

cate(formula, X.data = NULL, Y, r, fa.method = c("ml", "pc", "esa"),
adj.method = c("rr", "nc", "lqs", "naive"), psi = psi.huber, nc = NULL,
nc.var.correction = TRUE, calibrate = TRUE)
cate.fit(X.primary, X.nuis = NULL, Y, r, fa.method = c("ml", "pc", "esa"),
adj.method = c("rr", "nc", "lqs", "naive"), psi = psi.huber, nc = NULL,
ncc.correction = TRUE, calibrate = TRUE)

Arguments

formula a formula indicating the known covariates including both primary variables and
nuisance variables, which are seperated by |. The variables before | are primary variables
and the variables after | are nuisance variables. It's OK if there
is no nuisance variables, then | is not needed and formula becomes a typical
formula with all the covariates considered primary. An intercept term will still
be automatically added as a nuisance variable for the latter case.
X.data the data frame used for formula
Y outcome, n*p matrix
r number of latent factors, can be estimated using the function est.confounder.num
fa.method factor analysis method
adj.method adjustment method
psi derivative of the loss function in robust regression
nc position of the negative controls, if d0 > 1, this should be a matrix with 2 columns
nc.var.correction correct asymptotic variance based on our formula
calibrate if TRUE, use the Median and the Mean Absolute Deviation(MAD) to calibrate the test statistics
X.primary primary variables, n*d0 matrix or data frame
X.nuis nuisance covarites, n*d1 matrix

Details
Ideally nc can either be a vector of numbers between 1 and p, if d0 = 1 or the negative controls are the same for every treatment variable, or a 2-column matrix specifying which positions of beta are known to be zero. But this is yet implemented.

Value
a list of objects
alpha estimated alpha, r*d1 matrix
alpha.p.value asymptotic p-value for the global chi squared test of alpha, a vector of length d1
beta estimated beta, p*d1 matrix
beta.cov.row estimated row covariance of beta, a length p vector
beta.cov.col estimated column covariance of beta, a d1*d1 matrix
beta.t asymptotic z statistics for beta
beta.p.value asymptotic p-values for beta, based on beta.t
Y.tilde the transformed outcome matrix, an n*p matrix
Gamma estimated factor loadings, p*r matrix
Z estimated latent factors
Sigma estimated noise variance matrix, a length p vector

Functions
- cate.fit: Basic computing function called by cate

References

See Also
wrapper for wrapper functions of some existing methods.
Examples

```r
## simulate a dataset with 100 observations, 1000 variables and 5 confounders
data <- gen.sim.data(n = 100, p = 1000, r = 5)
X.data <- data.frame(X1 = data$x1)

## linear regression without any adjustment
output.naive <- cate(- X1, X.data, Y = data$y, r = 0, adj.method = "naive")

## confounder adjusted linear regression
output <- cate(- X1, X.data, Y = data$y, r = 5)

## plot the histograms of unadjusted and adjusted regression statistics
par(mfrow = c(1, 2))
hist(output.naive$beta.t)
hist(output$beta.t)
```

```
## simulate a dataset with 100 observations, 1000 variables and 5 confounders
data <- gen.sim.data(n = 100, p = 1000, r = 5)

## linear regression without any adjustment
output.naive <- cate.fit(X.primary = data$x1, X.nuis = NULL, Y = data$y,
                         r = 0, adj.method = "naive")

## confounder adjusted linear regression
output <- cate.fit(X.primary = data$x1, X.nuis = NULL, Y = data$y, r = 5)

## plot the histograms of unadjusted and adjusted regression statistics
par(mfrow = c(1, 2))
hist(output.naive$beta.t)
hist(output$beta.t)
```

est.confounder.num

Estimate the number of confounders

Description

Estimate the number of confounders

Usage

```r
est.confounder.num(formula, X.data = NULL, Y, method = c("bcv", "ed"),
rmax = 20, nRepeat = 20, bcv.plot = TRUE, log = "")
est.factor.num(Y, method = c("bcv", "ed"), rmax = 20, nRepeat = 12,
               bcv.plot = TRUE, log = "")
```

Arguments

- `formula` a formula indicating the known covariates including both primary variables and nuisance variables, which are separated by `. The variables before `|` are primary variables and the variables after `|` are nuisance variables. It's OK if there is no nuisance variables, then `|` is not needed and `formula` becomes a typical formula with all the covariates considered primary. An intercept term will still be automatically added as a nuisance variable for the latter case.
the data frame used for formula
outcome, n*p matrix
method to estimate the number of factors. There are currently two choices, "ed" is the eigenvalue difference method proposed by Onatski (2010) and "bcv" is the bi-cross-validation method proposed by Owen and Wang (2015). "bcv" tends to estimate more weak factors and takes longer time
the maximum number of factors to consider. If the estimated number of factors is rmax, then users are encouraged to increase rmax and run again. Default is 20.
the number of repeats of bi-cross-validation. A larger nRepeat will result in a more accurate estimate of the bcv error, but will need longer time to run.
whether to plot the relative bcv error versus the number of estimated ranks. The relative bcv error is the entrywise mean square error divided by the average of the estimated noise variance.
if log = "y", then the y-axis of the bcv plot is in log scale.
Value
if method is "ed", then return the estimated number of confounders/factors. If method is "bcv", then return the a list of objects
- r estimated number of confounders/factors
- errors the relative bcv errors of length 1 + rmax

Functions
- est.factor.num: Estimate the number of factors

References

Examples
```r
# example for est.confounder.num
data <- gen.sim.data(n = 50, p = 100, r = 5)
X.data <- data.frame(X1 = data$x1)
est.confounder.num(~ X1, X.data, data$y, method = "ed")
est.confounder.num(~ X1, X.data, data$y, method = "bcv")
# example for est.factor.num
n <- 50
p <- 100
r <- 5
Z <- matrix(rnorm(n * r), n, r)
Gamma <- matrix(rnorm(p * r), p, r)
Y <- Z %*% t(Gamma) + rnorm(n * p)
```
fa.em

est.factor.num(Y, method = "ed")
est.factor.num(Y, method = "bcv")

fa.em
Factor analysis via EM algorithm to maximize likelihood

Description
Factor analysis via EM algorithm to maximize likelihood

Usage
fa.em(Y, r, tol = 1e-06, maxiter = 1000)

Arguments
Y data matrix, a n*p matrix
r number of factors
tol a tolerance scale of change of log-likelihood for convergence in the EM iterations
maxiter maximum iterations

References

See Also
factor.analysis for the main function.

fa.pc
Factor analysis via principal components

Description
Factor analysis via principal components

Usage
fa.pc(Y, r)
factor.analysis

Arguments

Y data matrix, a n*p matrix
r number of factors

See Also

factorNanalysis for the main function.

factor_analysis Factor analysis

Description

The main function for factor analysis with potentially high dimensional variables. Here we implement some recent algorithms that is optimized for the high dimensional problem where the number of samples n is less than the number of variables p.

Usage

factor.analysis(Y, r, method = c("ml", "pc", "esa"))

Arguments

Y data matrix, a n*p matrix
r number of factors
method algorithm to be used

Details

The three methods are quasi-maximum likelihood (ml), principal component analysis (pc), and factor analysis using an early stopping criterion (esa).

The ml is iteratively solved the Expectation-Maximization algorithm using the PCA solution as the initial value. See Bai and Li (2012) and for more details. For the esa method, see Owen and Wang (2015) for more details.

Value

a list of objects

Gamma estimated factor loadings
Z estimated latent factors
Sigma estimated noise variance matrix
References

See Also

`fa.pc`, `fa.em`, `ESA`

Examples

```r
## a factor model
n <- 100
p <- 1000
r <- 5
Z <- matrix(rnorm(n * r), n, r)
Gamma <- matrix(rnorm(p * r), p, r)
Y <- Z %*% t(Gamma) + rnorm(n * p)

## to check the results, verify the true factors are in the linear span of the estimated factors.
pc.results <- factor.analysis(Y, r = 5, "pc")
sapply(summary(lm(Z ~ pc.results$Z)), function(x) x$r.squared)

ml.results <- factor.analysis(Y, r = 5, "ml")
sapply(summary(lm(Z ~ ml.results$Z)), function(x) x$r.squared)

esa.results <- factor.analysis(Y, r = 5, "esa")
sapply(summary(lm(Z ~ esa.results$Z)), function(x) x$r.squared)
```

gen.sim.data

Generate simulation data set

Description

`gen.sim.data` generates data from the following model $Y = X_0 \beta_0^T + X_1 \beta_1^T + Z \Gamma^T + E \Sigma^{1/2}$, $Z|X_0, X_1 = X_0 \alpha_0^T + X_1 \alpha_1^T + D$, $\text{cov}(X_0, X_1) \sim \Sigma_X$

Usage

gen.sim.data(n, p, r, d0 = 0, d1 = 1, X.dist = c("binary", "normal"),
alpha = matrix(0.5, r, d0 + d1), beta = NULL, beta.strength = 1,
beta.nonzero.frac = 0.05, Gamma = NULL, Gamma.strength = sqrt(p),
Gamma.beta.cor = 0, Sigma = 1, seed = NULL)
Arguments

- **n**: number of observations
- **p**: number of observed variables
- **r**: number of confounders
- **d0**: number of nuisance regression covariates
- **d1**: number of primary regression covariates
- **X.dist**: the distribution of X, either "binary" or "normal"
- **alpha**: association of X and Z, a r*d vector (d = d0 + d1)
- **beta**: treatment effects, a p*d vector
- **beta.strength**: strength of beta
- **beta.nonzero.frac**: if beta is not specified, fraction of nonzeros in beta
- **Gamma**: confounding effects, a p*r matrix
- **Gamma.strength**: strength of Gamma, more precisely the mean of square entries of Gamma * alpha
- **Gamma.beta.cor**: the "correlation" (proportion of variance explained) of beta and Gamma
- **Sigma**: noise variance, a p*p matrix or p*1 vector or a single real number
- **seed**: random seed

Value

- a list of objects

 - **X0**: matrix of nuisance covariates
 - **X1**: matrix of primary covariates
 - **Y**: matrix Y
 - **Z**: matrix of confounders
 - **alpha**: regression coefficients between X and Z
 - **beta**: regression coefficients between X and Y
 - **Gamma**: coefficients between Z and Y
 - **Sigma**: noise variance
 - **beta.nonzero.pos**: the nonzero positions in beta
 - **r**: number of confounders
Gender study dataset

Description

This genetics dataset is used to demonstrate the usage of cate in the vignette. It was originally extracted by Gagnon-Bartsch and Speed (2012) as an example of confounded multiple testing. The data included in this package contains only 500 genes that are sampled from the original 12600 genes, besides keeping all the spike-in controls.

References

Wrapper functions for some previous methods

Description

These functions provide an uniform interface to three existing methods: SVA, RUV, LEAPP. The wrapper functions transform the data into desired forms and call the corresponding functions in the package sva, ruv, leapp.

Usage

sva.wrapper(formula, X.data = NULL, Y, r, sva.method = c("irw", "two-step"), B = 5)

ruv.wrapper(formula, X.data = NULL, Y, r, nc, lambda = 1, ruv.method = c("RUV2", "RUV4", "RUVinv"))

leapp.wrapper(formula, X.data = NULL, Y, r, search.tuning = F, ipod.method = c("hard", "soft"))

Arguments

- formula: a formula indicating the known covariates including both primary variables and nuisance variables, which are separated by |. The variables before | are primary variables and the variables after | are nuisance variables. It’s OK if there is no nuisance variables, then | is not needed and formula becomes a typical formula with all the covariates considered primary. An intercept term will still be automatically added as a nuisance variable for the latter case.
X.data the data frame used for formula
Y outcome, n*p matrix
r number of latent factors, can be estimated using the function est.confounder.num
sva.method parameter for sva, whether to use an iterative reweighted algorithm (irw) or a two-step algorithm (two-step).
B parameter for sva, the number of iterations of the irwsva algorithm
nc parameter for ruv functions: position of the negative controls
lambda parameter for RUVinv
ruv.method either using RUV2, RUV4 or RUVinv functions
search.tuning logical parameter for leapp, whether using BIC to search for tuning parameter of IPOD.
ipod.method parameter for leapp, "hard": hard thresholding in the IPOD algorithm; "soft": soft thresholding in the IPOD algorithm

Details
The beta.p.values returned is a length p vector, each for the overall effects of all the primary variables.
Only 1 variable of interest is allowed for leapp.wrapper. The method can be slow.

Value
All functions return beta.p.value which are the p-values after adjustment. For the other returned objects, refer to cate for their meaning.

Examples
this is the simulation example in Wang et al. (2015).
n <- 100
p <- 1000
r <- 2
set.seed(1)
data <- gen.sim.data(n = n, p = p, r = r,
alpha = rep(1 / sqrt(r), r),
beta.strength = 3 * sqrt((1 + 1) / sqrt(n)),
Gamma.strength = c(seq(3, 1, length = r)) * sqrt(p),
Sigma = 1 / rgamma(p, 3, rate = 2),
beta.nonzero.frac = 0.05)
X.data <- data.frame(X1 = data$X1)
sva.results <- sva.wrapper(~ X1, X.data, data$Y,
r = r, sva.method = "irw")
ruv.results <- ruv.wrapper(~ X1, X.data, data$Y, r = r,
nc = sample(data$beta.zero.pos, 30), ruv.method = "RUV4")
leapp.results <- leapp.wrapper(~ X1, X.data, data$Y, r = r)
cate.results <- cate(~ X1, X.data, data$Y, r = r)

p-values after adjustment
par(mfrow = c(2, 2))
hist(sva.results$beta.p.value)
hist(ruv.results$beta.p.value)
hist(leapp.results$beta.p.value)
hist(cate.results$beta.p.value)

type I error
mean(sva.results$beta.p.value[data$beta.zero.pos] < 0.05)

power
mean(sva.results$beta.p.value[data$beta.nonzero.pos] < 0.05)

false discovery proportion for sva
discoveries.sva <- which(p.adjust(sva.results$beta.p.value, "BH") < 0.2)
fdp.sva <- length(setdiff(discoveries.sva, data$beta.nonzero.pos)) / max(length(discoveries.sva), 1)
fdp.sva
Index

*Topic data
 gender.sm, 11

adjust.latent, 2

cate, 2, 3, 3, 12
cate-package, 2

ESA, 9
est.confounder.num, 5
est.factor.num (est.confounder.num), 5

fa.em, 7, 9
fa.pc, 7, 9
factor.analysis, 2, 7, 8, 8

gen.sim.data, 9
gender.sm, 11

leapp, 11, 12
leapp.wrapper (wrapper), 11

ruv, 11, 12
ruv.wrapper (wrapper), 11
RUV2, 12
RUV4, 12
RUVin, 12

sva, 11, 12
sva.wrapper (wrapper), 11

wrapper, 4, 11